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Abstract

Fluctuations in pathlength of muons traversing matter are studied
by means of the Gaussian approximation in the context of Monte Carlo
simulations of muon transport. The method estimates the muon’s
pathlength corresponding to a Monte Carlo step from a knowledge of
the transverse phase space variables at the beginning and end of the
step. The step is then halved and pathlength is recalculated. This is
repeated until the result is stable to within a desired tolerance. An
extension to the case where electromagnetic fields are present is de-
scribed. A few results obtained with this method are presented by way
of illustration.

1 Introduction

Muon ionization cooling is more effective at relatively low energies. Cur-
rent scenarios favor kinetic energies of 100–300 MeV but some muons may
well stray outside this range while traversing a typical cooling channel. Es-
pecially, at the lower end of this extended range straightforward use of the
small angle and related approximations—which permeates much of the anal-
yses and simulation codes—may be questioned. In particular, pathlengths
through matter may not always be accurately evaluated. In simulations, an
accurate measure of the pathlength is needed to calculate averages of en-
ergy loss and angular deflection as well as fluctuations about the averages.
Pathlength fluctuations also affect time of arrival at an rf cavity and thus
the accelerating voltage applied to the muon. Good estimates of pathlength
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2 2 BASIC ALGORITHM

are therefore essential to the analysis of any proposed cooling channel. This
Note presents a method to estimate pathlength distributions of muons after
traversing a thick target—in which an electromagnetic field may be present.
The method may eventually evolve into a workable algorithm—for use in
more comprehensive codes of particle transport—but this is not the goal
here.

In this Note, the small angle approximation is used as part of a pertur-
bative/iterative approach to pathlength estimation. In Monte Carlo cal-
culations it is convenient to simulate collisions of muons with nuclei or
electrons collectively—using the small angle approximation—below some as-
sumed threshold angle, while above it collisions are simulated individually
with full 3-d treatment [1]. In principle, increasing the fraction of events
treated individually leads to an (almost) full 3-d event-by-event simulation
of the problem. In practice, due to decreasing step size, the energy– and
angular distribution of the events treated collectively become increasingly
skewed and harder to sample by any a priori adopted algorithm.

Sec. 2 reviews the relevant probability distribution and presents the ba-
sic strategy used in estimating pathlength. This involves first transporting
the muon across a fixed step in the beam’s general direction, z, then making
adjustments to the muon’s phase space variables as an improved approxi-
mation to the trajectory is determined. The procedure for assigning values
to the phase space variables after the initial step is outlined in Sec. 3. Sec. 4
describes the use of ‘random interpolation’ to make improved pathlength
estimates and—in turn—improved estimates of the phase space variables at
the end of the step. Adaptation of the algorithms to the presence of electro-
magnetic fields is discussed in Sec. 5. Some results obtained with the new
algorithms are shown in Sec. 6. A few concluding remarks are in Sec. 7.

2 Basic Algorithm

The procedure adopted here takes steps of fixed length along z. Only ‘slab’
geometries are dealt with. Values of the resulting (projected) angular deflec-
tions, x′, y′, and energy loss, ε, are estimated by the algorithms of [1]. This
includes sampling from realistic collective distributions as well as simulat-
ing discrete processes on an event-by-event basis. The pathlength assumed
in this step is an average pathlength as derived from the basic arc length
formula. Subsequently, two basic correction procedures are introduced to
improve pathlength estimates and its impact on phase space variables: end
point adjustment and midpoint random interpolation. End point adjust-
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ment involves estimating the change in pathlength to reflect the a posteriori
knowledge of the phase space variables at the end of the step—which in
turn induces a small correction on these same phase space variables. Ran-
dom interpolation refers to choosing an interpolating value, at some point
intermediate in z, from a probability distribution which incorporates the
known end point values as parameters. This also influences pathlength and
induces another correction to the phase space variables. In vacuo, with an
electromagnetic field present for which orbits are not easily calculated by
analytical means, a common strategy is to divide the initial step into two
or more pieces and compare results with those of the full step. If necessary,
this can be repeated until results of successive step-divisions meet some
specified criterion. As such, this strategy won’t work in transport through
matter because of the inherent randomness involved in scattering and energy
loss. In the present study successive step division is retained but—at each
midpoint—random values are chosen for the phase space values in a manner
consistent with what is already known about the trajectory. In contrast
with the full (initial) step treatment, these random interpolations are based
on the Gaussian approximation.

2.1 Gaussians

To evaluate pathlength corrections the method adopted here makes use of
the bi-Gaussian Fermi distribution [2, 3] for multiple scattering:

F (x, x′|x0, x
′
0, z) = (2

√
3/πθ2

sz
2) (1)

× e−(4/θ2
sz)[(x′−x′

0)
2−3(x′−x′

0)(x/z−x0/z−x′
0)+3(x/z−x0/z−x′

0)
2]

where x0, x, x′
0, x

′ are, resp., the initial and final x-coordinates and their
derivatives with respect to z, while θ2

s is the mean square (polar) scattering
angle per unit length. As per custom, the symbol | in Eq. 1 separates
the unknowns x, x′ from the given variables x0, x

′
0, z. There is an entirely

similar distribution for y, y′, independent of x, x′. This should be borne in
mind throughout this Note.

At some (low) level of approximation, energy loss in a thick target is also
represented by a Gaussian [2], G(ε|ε, σε), where ε is the energy observed at
depth z in the target and

ε = ε0 −
∣∣∣∣dE

dx

∣∣∣∣ ` (2)

is the average energy expected there, while

σ2
ε = 2πNAvZe4Tmax(1 − β2/2)`/Aβ2 (3)
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with Tmax the maximum energy transferable by the muon to a stationary
free electron, ` is the estimated average pathlength at depth z (see Sec. 3.1
below), and the other symbols have their ususal meaning.

2.2 Large Angles, Energy Loss

As is well known, the Gaussian distribution of x′, i.e., the marginal dis-
tribution in x′ of Eq. 1, severely underestimates what is observed at large
x′ or predicted there by a more accurate description such as the Molière
distribution. One remedy, favored here, is to introduce a cut-off angle in
the µN(µe) scattering cross section. Below this cut-off events are treated
collectively by means of a modified Gaussian—in the form of an Edgeworth
series [1]—while above it events are simulated individually. This is simpler
than sampling from the Molière distribution and at the same time more
accurate: even complicated nuclear form factors are readily included in the
large-angle part while individual event simulations automatically include
correlations between angular deflection and energy loss. Incoherent nuclear
scattering with ejection of a nucleon may also be included among the indi-
vidual processes.

For essentially the same reasons, a cut-off is used in the algorithms which
estimate energy loss. Above it muon-electron scattering events are simulated
individually while below it events are combined into a ‘restricted’ Vavilov-
type distribution [4] which may also be conveniently approximated by an
Edgeworth series [1].

In both the angle and energy loss determinations an additional source
of pathlength fluctuation results from the variable number of individual en-
counters. For the large number of small angle, small energy loss encounters—
summed over a target of reasonable thickness—such fluctuations are typi-
cally negligible. However, these fluctuations may matter when sampling
events above the cut-off angle or energy. Thus the number of events simu-
lated individually is chosen from a Poisson distribution determined by the
average number of such events. Thresholds for individual treatments must
therefore be set low enough so that fluctuations of this type are adequately
explored.

2.3 Corrections

Only after initial selection is complete does the procedure make use of
Eqs. 1 and 3 to evaluate corrections to x, y, x′, y′, and energy loss. Because
these corrections are applied to all angles and energy losses encountered—
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including those simulated by discrete processes—the parameters θs and σε

of these distributions must be evaluated over the whole range of allowed
values whereas similar parameters in the (collective) algorithms of [1] are
restricted by cut-off energies or angles.

Muons are followed through a specified geometry in steps of fixed length
in the z-direction. This could be adapted to steps measured along a curved
central trajectory. Such a step is then split sequentially into 2,4,8,... steps
and, after each such split, x, x′, y, y′, t, ` at the end of the entire step are ob-
tained. To aid in the convergence, Richardson extrapolation [5] is performed
on each variable. Thus a variable, such as x at the end of a z-step, having
been determined for a sequence of decreasing steplengths, is now considered
as a function of steplength which is then extrapolated to zero. Comparison
for stability with respect to user specified toleranace is performed on the ex-
trapolated results for pathlength. Pathlength is chosen since it is the object
of the present study and since it appears more sensitive to steplength than
the usual phase space variables

3 Initial Step

Tracking a muon begins by taking a fixed z-step through the geometry.
The choice of initial steplength must reflect material density and—where
relevant—field strengths. Steplength can be adjusted as the calculation
proceeds to reflect a changing environment or take into account information
gained from previous steps. Correlations between energy loss and angular
distribution are included in angle and energy selection algorithms for the
initial step. In the adjustment stage the relatively small changes to angular
deflection and energy loss, based on Eqs. 1 and 3, are made independently
but all correlations present in the initial full step are preserved.

3.1 Initial Pathlength Estimate

Prior to entering a z-slice, let the muon coordinates be x0, y0 and its direction
x′

0, y
′
0. Without any scattering the pathlength in a z-step is `0 = z/ cos θ0 =

zp0/pz, where θ0 is the spatial angle of the incident muon with respect to the
z-axis. From this estimate, average energy loss and rms scattering angle are
determined using as input energy and momentum at (projected) mid-step.
The pathlength, `1, through the z-slice of thickness z1 is estimated from the
usual parametric formula for arc length using z as the parameter:

`1 =
∫ z1

0

dz

cos θ
=
∫ z1

0

(
1 + x

′2 + y
′2
)1/2

dz
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≈
∫ z1

0

[
1 +

1
2

(
x

′2 + y
′2
)
− 1

8

(
x

′2 + y
′2
)2
]
dz. (4)

In Eqs. 4, x′ and y′ at coordinate z are random variables. If it is assumed
that they follow a Gaussian distribution, the averaged pathlength becomes:

`1 ≈
∫ z1

0

∫ ∞

−∞

∫ ∞

−∞

[
1 +

1
2

(
x

′2 + y
′2
)
− 1

8

(
x

′2 + y
′2
)2
]

× G(x′|x′, σx′)G(y′|y′, σy′)dx′dy′dz (5)

=
∫ z1

0

[
1 +

1
2

(
x′2 + y′2

)
− 1

8

(
x′4 + 2x′2y′2 + y′4

)]
dz.

For a Gaussian distribution in general, x
′2 and x

′4 are readily obtained:

x′2 = x′2 + σ2
x′ (6)

x′4 = x′4 + 6x′2σ2
x′ + 3σ4

x′ .

The Gaussian distribution of relevance here is the marginal distribution in
x′ of Eq. 1. Its parameters are x′ = x′

0 and σx′ = θs(`/2)1/2 with ` = p0z/pz .
Substituting into Eqs. 6:

x′2 = x
′2
0 +

1
2
θ2
s (p0/pz) z (7)

x′4 = x′4
0 + 3x

′2
0 θ2

s (p0/pz) z +
3
4
θ4
s (p0/pz)

2 z2

and then integration of Eq. 5 over z yields:

`1 =
[
1 +

1
2
(x

′2
0 + y

′2
0 ) − 1

8
(x

′2
0 + y

′2
0 )2

]
z1

+
1
4

[
1 − (x

′2
0 + y

′2
0 )
]
θ2
s(p0/pz)z2

1 − 1
12

θ4
s(p0/pz)2z3

1 . (8)

The part inside the first square brackets of Eq. 8 can be identified with the
first three terms of the expansion of

√
1 + x

′2
0 + y

′2
0 = p0/pz. Making this

substitution should provide a good estimate for the average pathlength at
this level of approximation and at this juncture in the simulation:

`1 = z1
p0

pz

[
1 +

1
2
θ2
sz1 − 1

4

(
p0

pz

)2

θ2
sz1 − 1

12

(
p0

pz

)
θ4
sz

2
1

]
. (9)

This `1 is now used to determine the average energy loss and rms scattering
angle upon which random selection of x′

1, y
′
1 and energy loss—via the algo-

rithms of [1]—is based. Then, given x′
1, the coordinate x1 at z1 is selected
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from the conditional distribution of x at z1. This is also a Gaussian as follows
from substituting x′

1 for x′ in Eq. 1: G(x|x0 + (x′
0 + x′

1)z1/2, θs`1
3/2

/2
√

6).
In calculating corrections to these initial estimates it is clear that z, as it
occurs, e.g., in Eq. 1, should be replaced by ` also.

3.2 Pathlength Adjustment

Next, the (average) pathlength is adjusted to reflect the choices made for
x, y, x′, y′ at the end of the z-slice—which, in turn, leads to readjustment of
these same variables. The distribution of x′ at any depth z, given the values
of x0, x

′
0, x1, x

′
1 at beginning and end, is again Gaussian and is obtained by

integrating F (x, x′|x0, x
′
0, x1, x

′
1, z) over all x, where

F
(
x, x′|x0, x

′
0, x1, x

′
1, z
)

=
F (x, x′|x0, x

′
0, z) F (x1, x

′
1|x, x′, z1 − z)

F (x1, x′
1|x0, x′

0, z1)
(10)

as follows from Bayes’ Theorem and where the F ’s in the rhs are all as per
Eq. 1. Carrying out this integration yields the Gaussian parameters:

x′(z) = x′
0 +

z

z1

(
x′

1 − x′
0

)
+

3z(z1 − z)
z2
1

(
2
x1 − x0

z1
− (x′

1 + x′
0

))

σ2
x′(z) =

θ2
s`z (z1 − z)

[
z3 + (z1 − z)3

]
2z5

1

. (11)

Integration of Eq. 5, with substitution from Eqs. 11, results in a rather
cumbersome expression:

`nw = z1

(
1 +

1
2
Ix +

1
2
Iy + Iσ − 1

8
Ixy − Ixσ − Iyσ − Iσσ

)
(12)

where

Ix = S2
x +

1
5

(Sx − Mx)2 +
1
12

V 2
x

Iσ =
θ2

s`1

30

Ixy =
72
35
(
S2

x + S2
y

)2
+

3
35
(
M2

x + M2
y

)2
+

1
80
(
V 2

x + V 2
y

)2
+

9
35

(SxVx + SyVy)2 +
36
35

(MxSx + MySy)2 +
11
70

(MxVx + MyVy)2

+
3
35

(SxVy − SyVx)2 +
12
35

(MxSy − MySx)2 +
11
210

(MxVy − MyVx)2

− 1
35

(MxSx + MySy)
[
72
(
S2

x + S2
y

)
+ 4

(
M2

x + M2
y

)− (V 2
x + V 2

y

)]
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+
2
35

(MxVx + MyVy) (SxVx + SyVy)

Ixσ =
θ2

s`1

420
(
2M2

x − 6MxSx + 18S2
x + V 2

x

)
Iσσ =

(
θ2

s`1

)2
840

(13)

with abbreviations Sx = (x1 − x0)/z1,Mx = (x′
1 + x′

0)/2, Vx = x′
1 − x′

0, and
with similar definitons for Iy and Iyσ.

Adjustments are now made to the phase space variables at the end of the
step to reflect the improved pathlength estimate, `nw, by simple rescaling.
While Gaussians are used only in the adjustment stage, it may be assumed
pro forma that the more laboriously generated phase space variables of the
initial step are the result of Gaussian random selection: e.g., x′ = x′+rGσx′ ,
where rG represents a Gaussian random variate with zero mean and unit
variance. Since σx′ scales with `1/2 this leads to

x′
nw = x′ +

(
x′

1 − x′
)(`nw

`1

)1/2

. (14)

Likewise, x is rescaled:

xnw = x + (x1 − x)

(
`nw

`1

)3/2

(15)

where x = x0 + (x′
0 + x′

1) z1/2 as per Sec. 3.1. Similarly, energy loss and
elapsed time may be corrected using the new pathlength but to save compu-
tation this is postponed until convergence is achieved for average pathlength.
Considering the effects of a small adjustment in energy on rms scattering
angle this appears justified. It may not apply when em-fields are present,
see below.

At this point a first iteration is initiated: xnw, x′
nw replace x1, x

′
1 in

Eqs. 11 and, along with ynw, y′nw, determine a new `nw which leads to a
new xnw, x′

nw, etc., until convergence (in x, x′, y, y′, `nw) is achieved to some
specified tolerance.

4 Random Interpolation

Random interpolation consists of selecting x, x′, y, y′ at an intermediate lo-
cation, here always chosen mid-step along z, in a manner consistent with the
known values of these variables at the neighboring end points. Independence



4.1 Angles, Positions 9

of events for scattering and energy loss means that only nearest-neighbors
need be considered. Adopting specific values for intermediate x, x′, y, y′ in
this manner thus leads to a path winding through initial, final, and all in-
termediate locations with crossing angles as determined at each stage by
random interpolation. At the set of ‘in-between’ z-segments the trajectory
remains free but the probability distributions of x, x′, y, y′ at these locations
center more narrowly about their average values with successive subdivi-
sions. Random interpolation may also be performed for the energy (and
time) variable if variation in energy over a steplength affects θs significantly.
As a practical matter this should seldom be necessary. As in the case of end
point adjustments, above, energy and time calculation is postponed until
convergence is achieved.

In the present study—until the final stage is reached—it is average path-
length which is adopted to adjust angles and positions as well as to check
on convergence of the calculation. It might seem appropriate to choose—at
each stage, beginning with the initial step—a random pathlength using an
appropriate distribution based on what is known about the path at that
point. However, complications arise if further subdivision proves necessary,
i.e., if one must determine new intermediate x, x′, y, y′ which would then de-
pend (in some complicated manner) upon the pathlength chosen randomly
in the previous iteration(s). This is avoided by using the average pathlength
at all stages of the iteration until the final one when this difficulty is not
present and a random value is chosen from a Gaussian (see Sec. 4.3).

4.1 Angles, Positions

At some intermediate location—and with x as yet unspecified—x′ is dis-
tributed as a Gaussian, already encountered above, with parameters given
by Eqs. 11. Once a value of x′ is chosen at some intermediate point, z, the
distribution of x at that point is also Gaussian with:

x(z) =
(z1 − z)3 [(x′ + x′

0) z + 2x0] − z3 [(x′ + x′
1) (z1 − z) − 2x1]

2
[
z3 + (z1 − z)3

]

σ2
x(z) =

θ2
s`nw

3
z3 (z1 − z)3

24z3
1

[
z3 + (z1 − z)3

] . (16)

Since—in this study—the interpolation point is always midway (in z)
between the endpoints Eqs. 11 simplify considerably:

x′ =
3 (x1 − x0)

2z1
− 1

4
(
x′

0 + x′
1

)
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σ2
x′ =

θ2
s`nw

32
(17)

as do Eqs. 16:

x =
(x1 + x0)

2
− 1

8
(
x′

1 − x′
0

)
z1

σ2
x =

θ2
s`nw

3

384
. (18)

As can be seen—at the midway point, but not elsewhere—the x-distribution
is independent of the x′-value selected. Having chosen intermediate x, x′, y, y′

as per Eqs. 17 and 18 the new pathlength can now be estimated using Eq. 12
as the sum of the two legs. Knowing the new pathlength, adjustments are
made to the x1, x

′
1, y1, y

′
1 at the end of the step as per Eqs. 14 and 15.

4.2 Convergence

Following determination of all variables at the end of a z-slice, Richardson
extrapolation is performed and the predicted average pathlength is com-
pared with that obtained in the previous round. If they do not match
within specified tolerance a new subdivision is initiated. As the number of
subdivisions of the z-slice is increased, the order of the polynomial (in h,
the width of the subdivision) of the Richardson extrapolation increases. The
order of the polynomial keeps pace with the subdivisions until the fourth
order after which it is kept at that level and only the values corresponding
to the four smallest subdivisions participate in the extrapolation. Only even
orders of h are considered since this guarantees the residuals of the phase
space variables to have a minimum at h = 0 [5].

4.3 Final Adjustments

At the end of this process—when successive iterations agree on the average
value of the pathlength to within tolerance—a final adjustment is made
to allow a random variation of the pathlength given the parameters which
have been fixed thus far. This variation reflects what may occur along all
the in-between z-segments where the phase space variables are not fixed.
At each stage of the subdivision, the average value of the pathlength of the
ith segment, `i, is known. It is assumed that the pathlength distribution
is Gaussian about this average. Its variance is estimated from the usual
propagation-of-errors formula

σ2
` =

(
∂`

∂x′

)2

σ2
x′ +

(
∂`

∂y′

)2

σ2
y′ . (19)
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The partial derivatives—for the ith subdivision—follow from Eq. 4, evaluated
to lowest order

∂`

∂x′ ≈
∫ zi+1

zi

x′dz = xi+1 − xi (20)

while σ2
x′ is represented by its average over the trajectory

σ2
x′ =

∫ zi+1
zi

σ2
x′(z)dz

zi+1 − zi
(21)

where σ2
x′(z) is taken from Eqs. 11. Performing the integration and adding

the y-term yields:

σ2
`i

=
[
(xi+1 − xi)

2 + (yi+1 − yi)
2
] θ2

s`i

30
. (22)

Average total pathlength, `1, over a full step, z1, is the sum over its seg-
ments. The σ2

`i
are likewise summed over all segments. The Gaussian as-

sumptions and evaluating σ`1 in this approximate manner appears justified
since—at the point where further subdivision does not change average path-
length significantly—one expects σ` to be small. A random `nw is chosen
from G(`nw|`1, σ`1)—after which the variables are adjusted once more in the
manner of Eqs. 14 and 15.

Given the new pathlength, a more accurate value for the energy, εnw, at
the end of the step, is obtained by rescaling linearly with pathlength

εnw = ε0 + (ε − ε0)
(

`nw

`1

)
. (23)

Having determined x, x′, y, y′, ε, and `nw, overall transit time is found as-
suming the velocity, β, varies linearly over `nw:

t =
∫ `nw

0

ds

β
=

`nw

β1 − β0
log

β1

β0
(24)

which, as required, approaches `nw/β0 as β1 → β0. The assumption of linear
variation of β with distance traveled is strictly for convenience. It appears
justified because, in the regime of interest, β is expected to vary little over
one steplength.

5 Electromagnetic Fields

In general, the presence of an electromagnetic (em) field, even in an evacu-
ated region, is treated by numerical methods. From the Lorentz force—with
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z instead of t as the independent variable:

d~p

dz
=

e

βz

(
~E + ~β × ~B

)
. (25)

Perhaps the simplest algorithm is to evaluate the fields and momenta on the
right-hand sides of Eqs. 25 at the (projected) midpoint of a Monte Carlo
step and take them to be constant throughout the step. After traversing a
thickness z, this leads to a first order change in x′:

x′(z) = x′
0 +

e

p2
z

[
(εEx + pyBz − pzBy) − px

pz
(εEz + pxBy − pyBx)

]
z (26)

which is abbreviated as x′(z) = x′
0 + axz. To first order the displacement is

x(z1) = x0 + x′
0z1 +

ax

2
z2
1 = x0 +

x′
0 + x′(z1)

2
z1 (27)

while the energy changes by

ε(z1) = ε0 +
e

pz

(
~p · ~E

)
z1. (28)

This leads, via Eq. 4, to an average pathlength:

`1 =
p0

pz
z1 +

[(
axx′

0 + ayy
′
0

)(
3 −

(
p0

pz

)2
)

+

(
2 −

(
p0

pz

)2
)(

p0

pz

)
θ2
s

]
z2
1

4

+ [2(a2
x + a2

y

)
− 3

(
axx′

0 + ayy
′
0

)2 − (axy′0 − ayx
′
0

)2
−4
(
axx′

0 + ayy
′
0

) (p0

pz

)
θ2
s −

(
p0

pz

)2

θ4
s]z3

1

12

−
(
a2

x + a2
y

) [
axx′

0 + ayy
′
0 +

(
p0

pz

)
θ2
s

]
z4
1

8
−
(
a2

x + a2
y

)2 z5
1

40
(29)

in the presence of both matter and an em field. It is assumed that σ2
x′ =

θ2
sp0z/pz where all variables are evaluated at the beginning of the step. With

ax = ay = 0 Eq. 29 reverts to Eq. 9. Setting θs = 0 yields an estimate of
the pathlength through an em field in vacuo.

Following determination of the average pathlength the calculation pro-
ceeds similarly to the no-field case. Random selection of x′

1 is by the methods
of [1], with x′

1 given by the in vacuo result of Eq. 26. Given a value of x′
1,

x1 is selected from a Gaussian with mean

x1 = x0 +
x′

0 + x′
1

2
z1 (30)
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and variance θs`1
3/2

/2
√

6 as for the no-field case. Given the end-values of
the variables after the initial step—prior to any adjustments—an improved
average pathlength is calculated using Eq 12. This is the same expression
as for the no-field case since all effects of the fields are incorporated into
the values of x1 and x′

1. It is easy to confirm this explicitly by introducing
the proper expectation values in the presence of em-fields into Eq. 10 and
rederive that x′(z) and σ2

x(z) are given by Eqs. 11 also. It then follows that
Eq. 12 is the correct improved pathlength in the presence of a field as well.

As before, in subsequent stages the z-step gets repeatedly halved until
stability is achieved. The procedure is the same here, except that it now
requires one to re-evaluate the fields at the midpoint locations and times.
After selection of a new x, x′ and y, y′ at the z-midpoint, via Eqs. 17 and
18, ~E and ~B are recalculated at that point. The new values for the field will
change x′ by

∆x′ = (anw
x − ax) z1 (31)

and x by

∆x =
1
2

(
x

′nw
1 − x′

1

)
z1. (32)

A new pathlength is determined by summing Eq. 12 over the two legs after
which changes in the phase space variables are introduced as per Eqs. 14
and 15. This is repeated until the desired tolerance is met. Interfacing with
more sophisticated algorithms, such as Runge-Kutta [5] or Boris [6], with
the methods presented here for transport through matter appears straight-
forward but would require some extra work.

6 Results

A few test results obtained with the above algorithm are described in this
section. One suite of such tests concerns dependence of predictions on ini-
tial step size. In the above model the basic laws assumed for large angle
scattering are different from those assumed at very small angles. Their
treatment also differs: collective versus individual simulation. These effects
could influence pathlengths, etc., by amounts comparable to those arising
from choice of stepsize and are therefore eliminated here and the Gaussian
approximation for scattering is assumed to hold throughout. As a conse-
quence, results are not expected to be accurate but now a more meaningful
intercomparison becomes possible. For the energy loss algorithms this dif-
ficulty is less pronounced: the model is the same, but the treatment still
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differs. To remove—as much as possible—subtle differences between collec-
tive and individual treatments (such as correlations) the (average) number
of individual events per step (equivalent to stipulating a cut-off energy) is
taken proportional to stepsize. The expected number of individual events
for a muon traversing any part of the target is thus the same regardless of
stepsize. For the collective part the (4th order) Edgeworth series is used.
One could resort to a Gaussian energy loss distribution as well, per Eqs. 2
and 3, but for small enough steps this creates a problem in that it may
predict some particles to gain energy by traversing a step in the target. For
simplicity, the density effect of energy losses is neglected.

6.1 Pencil Beam on Target

A test case of a pencil beam of a 0.25 GeV/c muons incident on a 112 cm
long lithium target is examined here. In Table 1 average values, standard
deviations, and correlation coefficients of various characteristics of the muons
at the end of the target are compared for initial step sizes of 0.2, 0.5, 1, and 2
cm. Five collisions per cm with electrons are treated individually. Tolerance
is set at 10−8, 10−7, or 10−6 cm, i.e., estimated pathlengths corresponding
to each step must agree to this value or better between successive halvings of
the step length. If, at any point on the trajectory where they are calculated,
a muon’s polar angle or radial excursion exceeds an upper bound of 0.5 rad
or 12 cm, resp., it is excluded from the simulation. A total of 107 incident
muons are traced in each simulation with 10−6 or 10−7 cm tolerance, but
only 2.5 · 106 for the 10−8 cm cases, due to cpu time considerations.

The correlations listed in Table 1 conform more or less to expectation:
strong positive correlations are observed between pathlength on the one
hand and radial excursion, angle, or traversal time on the other and a strong
negative correlation between energy and time. The coefficient relating path-
length and energy is negative but quite weak. This confirms the expectation
that energy fluctuations are dominated by variations in losses from individ-
ual µ − e encounters, while changes in pathlength play only a minor role.
The overall picture presented by Table 1 is that the algorithm does it job
well with respect to transverse phase space variables and pathlength: fi-
nal results are essentially insensitive to choice of initial step size. However,
for time and energy variables for a weak trend with initial steplength is
discernible in Table 1. This is not surprising in that more care has been
devoted to the transverse variables in the above algorithms. Also in this
regard, the ρ`,E appear to be the least robust of the results in Table 1 with
respect to stepsize or tolerance, although no clear trend emerges.
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Table 1: Dependence on initial stepsize and tolerance of 0.25 GeV/c muon pencil
beam characteristics after 112 cm of lithium—full algorithm

.

step tol 〈`〉 - Z 〈θ2〉1/2 〈r2〉1/2 〈EK〉 〈ct〉
cm cm cm rad cm GeV cm

0.10 10−6 0.2692 0.10586 5.178 0.05276 18.532
10−7 0.2692 0.10582 5.177 0.05276 18.532

0.20 10−6 0.2693 0.10590 5.178 0.05270 18.541
10−7 0.2693 0.10590 5.179 0.05270 18.541
10−8 0.2691 0.10583 5.175 0.05270 18.541

0.50 10−6 0.2692 0.10588 5.177 0.05269 18.542
10−7 0.2692 0.10588 5.176 0.05269 18.541
10−8 0.2692 0.10587 5.177 0.05269 18.542

1.00 10−6 0.2692 0.10589 5.178 0.05269 18.542
10−7 0.2692 0.10589 5.177 0.05269 18.542

2.00 10−6 0.2692 0.10589 5.178 0.05269 18.544
10−7 0.2692 0.10590 5.177 0.05269 18.544

σ` σθ σr σE σt

0.10 10−6 0.1850 0.05515 2.581 0.00421 0.774
10−7 0.1850 0.05519 2.581 0.00421 0.774

0.20 10−6 0.1851 0.05519 2.581 0.00421 0.775
10−7 0.1851 0.05519 2.581 0.00421 0.775
10−8 0.1848 0.05520 2.580 0.00421 0.775

0.50 10−6 0.1850 0.05519 2.581 0.00421 0.775
10−7 0.1850 0.05519 2.580 0.00421 0.775
10−8 0.1850 0.05515 2.581 0.00421 0.775

1.00 10−6 0.1850 0.05521 2.581 0.00421 0.775
10−7 0.1850 0.05520 2.581 0.00421 0.775

2.00 10−6 0.1850 0.05520 2.581 0.00420 0.775
10−7 0.1850 0.05520 2.581 0.00420 0.775

ρ`,r ρ`,θ ρ`,E ρ`,t ρE,t

0.10 10−6 0.9146 0.6769 -0.09771 0.3645 -0.9287
10−7 0.9146 0.6769 -0.09793 0.3648 -0.9286

0.20 10−6 0.9147 0.6766 -0.09796 0.3646 -0.9288
10−7 0.9146 0.6766 -0.09829 0.3648 -0.9288
10−8 0.9145 0.6763 -0.09736 0.3636 -0.9289

0.50 10−6 0.9146 0.6763 -0.09774 0.3643 -0.9289
10−7 0.9145 0.6768 -0.09822 0.3647 -0.9289
10−8 0.9146 0.6763 -0.09763 0.3641 -0.9288

1.00 10−6 0.9146 0.6766 -0.09762 0.3638 -0.9291
10−7 0.9147 0.6769 -0.09761 0.3643 -0.9289

2.00 10−6 0.9146 0.6770 -0.09794 0.3634 -0.9291
10−7 0.9147 0.6770 -0.09759 0.3643 -0.9290
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Table 2: Dependence on stepsize of 0.25 GeV/c muon pencil beam characteristics
after 112 cm of lithium—no adjustments

step 〈`〉 - Z σ` 〈θ2〉1/2 〈Ekin〉 σE ρ`,E

cm cm rad GeV GeV

0.1 0.2689 0.1848 0.10573 0.05276 0.00421 -0.09776
0.2 0.2690 0.1849 0.10578 0.05270 0.00421 -0.09827
0.5 0.2690 0.1848 0.10576 0.05269 0.00421 -0.09697
1.0 0.2690 0.1849 0.10577 0.05270 0.00421 -0.09695
2.0 0.2691 0.1849 0.10576 0.05270 0.00420 -0.09589
4.0 0.2691 0.1850 0.10572 0.05272 0.00419 -0.09440

In a fixed step Monte Carlo the question of optimal steplength arises: too
small a step consumes needless cpu time while larger ones result in less ac-
curacy. While a definitive answer will be highly specific to both the problem
at hand and available computing resources, a general idea can be obtained
by running the same test problem as above for a set of fixed step sizes. In
Table 2 average and standard deviation of pathlength, rms angle, average
energy and standard deviation, along with the coefficient of correlation be-
tween pathlength and energy are compared for fixed step sizes ranging from
0.1 to 4.0 cm. The algorithm takes a half-step, performs Monte Carlo selec-
tion of energy loss and scattering angle, then completes the z-step with the
updated variables. Except for fixing step size, the model and its parameters
are exactly as for the variable stepsize cases of Table 1. It can be seen that
with dimishing step size the entries of Table 2 approach limiting values close
to the variable step results of Table 1. Again ρ`,E is the least robust with
respect to step size although some trend appears to be present: a 3–4%
increase in ρ`,E as stepsize increases from 0.1 to 4 cm.

Of special interest to muon beam cooling are certain combinations of the
characteristics listed in Tables 1 and 2, such as normalized 4-d (transverse)
emittance, εN

⊥ , longitudinal emittance, εN
‖ , and 6-d emittance, εN

6 . Table 3
compares these quantities for the same cases as Tables 1 and 2. In addition,
the fraction of particles lost traversing the target—by the above criteria on
angle and radial excursion—is listed for each case. Decay is not included
as a cause of muon loss. Emittances obtained with fixed steps (marked
fixed in tolerance column) are generally slightly lower than those resulting
from variable step calculations—most notably for those with larger fixed step
size. This is also true for particle losses. By this measure also, the algorithm
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Table 3: εN
⊥ , εN

‖ , εN
6 , and fraction of particles lost after 112 cm of lithium for

indicated stepsize and tolerance.

step tolerance εN
⊥ εN

‖ εN
6 lost

cm cm2 GeV · cm GeV · cm3 fraction
0.1 fixed 5.880 ·10−2 1.1432 ·10−2 6.721 · 10−4 0.019764
0.2 5.880 1.1433 6.723 0.019804
0.5 5.876 1.1422 6.711 0.019781
1.0 5.880 1.1415 6.712 0.019814
2.0 5.879 1.1390 6.696 0.019805
4.0 5.862 1.1344 6.650 0.019802
0.1 10−6 5.891 1.1436 6.737 0.019831

10−7 5.889 1.1437 6.735 0.019890
0.2 10−6 5.892 1.1443 6.742 0.019947

10−7 5.895 1.1439 6.744 0.019963
10−8 5.884 1.1447 6.736 0.019929

0.5 10−6 5.893 1.1440 6.741 0.019966
10−7 5.888 1.1432 6.731 0.019960
10−8 5.893 1.1434 6.738 0.020068

1.0 10−6 5.892 1.1423 6.730 0.020001
10−7 5.890 1.1424 6.728 0.019888

2.0 10−6 5.890 1.1400 6.712 0.020004
10−7 5.889 1.1402 6.714 0.020075

appears to work better for transverse than for longitudinal emittance.
By way of illustration, further results pertaining to this example are

shown in Figs. 1–7. These are derived from a Monte Carlo run with 106

incidents which uses the full algorithm with Edgeworth series for both energy
loss (to 6th order) and angular deflection (8th order). Tolerance is set at
10−7 cm and initial stepsize at 0.2 cm. The density effect for energy loss
is included here. The evolution of the pathlenght distribution with depth
inside the target is shown in Fig. 1. It is exhibited at eight successive depths
marked, in cm, on each graph. The non-Gaussian nature of the distribution
is evident at any depth. The kinetic energy distribution is presented at the
same eight depths in Fig. 2, which demonstrates a trend—still incomplete—
towards a Gaussian distribution with increasing depth.
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Figure 1: Evolution of pathlength distribution with distance into the target (in
cm, indicated in each plot).

Again at the same set of depths, Fig. 3 shows the radial distribution of
the muons (solid) as well as the distribution of the maximal radial excursion
at that depth (dashes). At larger radii these graphs are hardly distinguish-
able. This is repeated in Fig. 4 for the angular distributions and distribution
of maximal angle. As expected, these show significantly larger differences
at all radii compared to the radial distributions. In practical applications,
a muon traveling through a beamline, regularly interchanges angle and po-
sition, thus causing the distributions of Figs. 3 and 4 to become comingled.
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Figure 2: Evolution of kinetic energy distribution with distance into the target (in
cm, indicated in each plot).

Scatterplots of kinetic energy versus pathlength are shown in Fig. 5,
again at the same eight depths. A small negative correlation appears to be
present in these plots.

At the exit face of the target (112 cm), Fig. 6 (top) shows the fraction
of muons with radial coordinate above the value of the abcissa (solid) and
the fraction with maximal radial excursion above this value (dashed) as
well as the difference between the two (dotted line). This is repeated in
Fig. 6 (bottom) for polar angle of the muon. These plots thus represent
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Figure 3: Evolution of radial distribution (solid) and the distribution of maximal
radial excursion (dashed) with distance into the target (in cm, indicated in each
plot).

the integrals for the final frames of Figs. 4 and 5 from r or θ out to their
maximum values. The rather abrupt decline at the largest values of radius or
angle plotted in Fig. 6 may appear somewhat puzzling. However, it should be
noted that (i) there is a cut-off imposed in the calculation corresponding to
the highest value of either radius or angle exhibited in each graph, (ii) radius
and angle are strongly correlated: as can be seen in Table 1 both are strongly
and positively correlated with pathlength so that the angular cut-off can
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Figure 4: Evolution of angular distribution (solid) and distribution of maximal
angular excursion (dashed) with distance into the target (in cm, indicated in each
plot).

influence the radial one and vice versa, (iii) for 106 incidents the number
of muons which explore these outer reaches is small and thus subject to
considerable statistical uncertainty.

Fig. 7 presents the fraction of muons above a certain radius or angle
(curve) as per legend as well as the fraction with maximal excursion above
that value (plotted symbols), as function of depth (z). Again, not surpris-
ingly, larger differences are observed for angular excursions.
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Figure 5: Evolution of kinetic energy vs pathlength correlation with distance into
the target (in cm, indicated in each plot).

6.2 Repetitive Structure

The examples treated above are not representative of the repetitive structure
encountered in ionization cooling. Such a repetitive structure may cause sig-
nificant cancellations for certain errors of approximation while others may
accumulate and become more problematic. The present purpose is only to
provide an illustration and hence it is not important that beam, target, or
rf be realistic representations of what might be part of an actual design.
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Figure 6: top: Fraction of muons with radial coordinate above value of abcissa at
end of target (112 cm), shown as solid curve. Dashed curve indicates fraction with
maximal radial excursion above this value. Dotted curve is difference of the two
curves. bottom: Same as top figure but with respect to angular excursions and
angle.

However, it is deemed desirable to start with a diffuse beam and to replen-
ish the muon energy periodically so that relatively low energy muons can
traverse much more material than is possible in a single pass.

The muon beam is characterized by mean longitudinal momentum 〈pz〉 =
0.2 GeV/c and standard deviation σpz = 0.005 GeV/c, with 〈p⊥〉 = 0 and
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Figure 7: top: Fraction of muons with prior maximal radial excursion for each
indicated value of the radius (symbols) as a function of distance into target. Also
shown are the fraction of muons with radial coordinate above the indicated values
(curves). bottom: Same as top figure but with respect to angular excursions and
angle.

σp⊥ = 0.005 GeV/c, with 〈x〉 = 〈y〉 = 0 and σx = σy = 2 cm, and with
〈t〉 = 0 and σct = 1 cm. Monte Carlo selection from the above set uses its
own random number generator so that, for the same number of incidents,
each case starts with the exact same beam. The above characteristics of the
initial beam result in ‘observed’ initial emittances of εN

⊥ = 8.955 · 10−3 cm2,
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εN
‖ = 4.181 · 10−2cm · GeV , and εN

6 = 3.745 · 10−4cm3 · GeV . The lithium
target consists of eight segments each 60 cm long with radius of 15 cm. In
each segment an axial magnetic field of 2 Tesla provides solenoidal focusing.
Orbits of the muons in such a field are easily obtained analytically so that the
approximate procedures of Sec. 5 are avoided along with any errors they may
introduce. After each segment—including the last one—an energy boost of
0.063 + 0.005c(t − t0) GeV is delivered to the beam exclusively along the z-
direction. Here t0 is an empirically determined average arrival time for each
cavity. This energy boost is applied uniformly across the entire aperture.
Muons reaching r > 15 cm, θ > 0.5, or pz outside the range 0.5–1.5pz0 are
excluded. The beam consists of 2.5 · 106 muons in each simulation—except
for the cases with fixed stepsize of 0.1 cm and 0.2 cm for which 107 are
launched. Tables 4–6 present results in a manner similar to the Tables 1–3
above. Table entries correspond to values following application of the final
restoring rf. This final boost clearly affects 〈EK〉 and 〈θ2〉1/2 and has some
influence on ρ`,θ, ρ`,E and ρE,t as well.

Again the algorithms work best for transverse variables. In Table 4, the
coefficients ρ`,E and ρ`,t have the opposite sign from those obtained after a
single pass through a target. This can be attributed to the rf boosts which
are timed to provide phase stability. Comparing the results of Tables 4 and
5 it can be seen that, for fixed steplength calculations, average pathlength
and its rms spread are always below the ones obtained with variable stepsize.
The same appears true for the rms angles. In this case also fixed step results
show a more definite trend with stepsize. This can also be seen in Table 6
where again emittances with large (unadjusted) stepsizes are consistently
low.

It should be emphazised again that the results of this section—except for
those presented in the figures—use a highly simplified model which improves
intercomparison but is not expected to provide accuracy.

7 Concluding Remarks

The main source of pathlength fluctuation is associated with fluctuations of
scattering angle in muon-atom encounters and this appears to be adequately
explored by fixed step algorithms. Two smaller sources of pathlength fluc-
tuation are: (i) the number of such events fluctuates about its average, and
(ii) the path of a muon as it scatters off nuclei and electrons in material
is not straight line or a small set of connected straight lines and its length
should be estimated more accurately than by simply adding the lengths of
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Table 4: Dependence on initial stepsize and tolerance of 0.20 GeV/c diffuse muon
beam characteristics after 8 × 60 cm of lithium—full algorithm

.

step tol 〈`〉 - Z 〈θ2〉1/2 〈r2〉1/2 〈EK〉 〈ct〉
cm cm cm rad cm GeV cm

0.10 10−6 2.1411 0.07011 6.754 0.12071 95.728
10−7 2.1400 0.07011 6.753 0.12072 95.731

0.20 10−6 2.1389 0.07012 6.750 0.12068 95.733
10−7 2.1397 0.07010 6.751 0.12069 95.733
10−8 2.1391 0.07011 6.760 0.12067 95.733

0.50 10−6 2.1394 0.07008 6.756 0.12068 95.735
10−7 2.1384 0.07006 6.754 0.12067 95.732
10−8 2.1380 0.07007 6.753 0.12066 95.735

1.00 10−6 2.1387 0.07009 6.753 0.12067 95.731
10−7 2.1385 0.07016 6.756 0.12067 95.733

2.00 10−6 2.1386 0.07010 6.754 0.12069 95.734
10−7 2.1401 0.07010 6.758 0.12070 95.735

σ` σθ σr σE σt

0.10 10−6 1.0035 0.03647 3.249 0.01161 2.178
10−7 1.0031 0.03643 3.251 0.01162 2.180

0.20 10−6 1.0028 0.03649 3.251 0.01161 2.181
10−7 1.0022 0.03650 3.249 0.01161 2.181
10−8 1.0041 0.03652 3.247 0.01162 2.180

0.50 10−6 1.0024 0.03646 3.251 0.01161 2.180
10−7 1.0045 0.03646 3.250 0.01162 2.180
10−8 1.0021 0.03653 3.250 0.01159 2.180

1.00 10−6 1.0018 0.03649 3.251 0.01161 2.182
10−7 1.0017 0.03651 3.252 0.01161 2.181

2.00 10−6 1.0020 0.03649 3.251 0.01161 2.181
10−7 1.0038 0.03651 3.255 0.01161 2.182

ρ`,r ρ`,θ ρ`,E ρ`,t ρE,t

0.10 10−6 0.0424 0.3172 0.03322 -0.01066 0.5091
10−7 0.0433 0.3174 0.03336 -0.01120 0.5103

0.20 10−6 0.0425 0.3179 0.03379 -0.01001 0.5102
10−7 0.0427 0.3180 0.03399 -0.01193 0.5101
10−8 0.0437 0.3180 0.03301 -0.01145 0.5107

0.50 10−6 0.0427 0.3172 0.03288 -0.01190 0.5109
10−7 0.0434 0.3177 0.03417 -0.01153 0.5097
10−8 0.0423 0.3179 0.03209 -0.01089 0.5107

1.00 10−6 0.0431 0.3193 0.03290 -0.01146 0.5114
10−7 0.0448 0.3190 0.03516 -0.00989 0.5101

2.00 10−6 0.0429 0.3172 0.03218 -0.01234 0.5108
10−7 0.0426 0.3189 0.03344 -0.01281 0.5112
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Table 5: Dependence on stepsize of 0.2 GeV/c diffuse muon beam characteristics
after 8 × 60 cm of lithium—no adjustments

step 〈`〉 - Z σ` 〈θ2〉1/2 〈Ekin〉 σE ρ`,E

cm cm rad GeV GeV

0.1 2.1333 0.9980 0.06997 0.12068 0.01160 0.03343
0.2 2.1343 0.9988 0.06998 0.12070 0.01159 0.03340
0.5 2.1327 0.9983 0.06995 0.12068 0.01160 0.03307
1.0 2.1335 0.9989 0.06997 0.12069 0.01160 0.03345
2.0 2.1335 0.9991 0.06997 0.12070 0.01160 0.03281
5.0 2.1346 1.0001 0.06997 0.12080 0.01161 0.03391

Table 6: εN
⊥ , εN

‖ , εN
6 , and fraction of particles lost for diffuse muon beam after

8 × 60cm of lithium for indicated stepsize and tolerance.

step tolerance εN
⊥ εN

‖ εN
6 lost

cm cm2 GeV · cm GeV · cm3 fraction
0.1 fixed 0.27725 0.20580 0.05706 0.36578
0.2 0.27712 0.20576 0.05702 0.36535
0.5 0.27708 0.20587 0.05704 0.36569
1.0 0.27711 0.20595 0.05707 0.36517
2.0 0.27712 0.20581 0.05704 0.36399
5.0 0.27727 0.20604 0.05713 0.35883
0.1 10−6 0.27806 0.20605 0.05729 0.36542

10−7 0.27791 0.20617 0.05730 0.36557
0.2 10−6 0.27816 0.20614 0.05734 0.36649

10−7 0.27813 0.20621 0.05735 0.36620
10−8 0.27837 0.20615 0.05738 0.36626

0.5 10−6 0.27803 0.20597 0.05727 0.36608
10−7 0.27781 0.20620 0.05728 0.36587
10−8 0.27795 0.20547 0.05711 0.36649

1.0 10−6 0.27792 0.20606 0.05727 0.36617
10−7 0.27845 0.20619 0.05741 0.36578

2.0 10−6 0.27815 0.20601 0.05730 0.36533
10−7 0.27863 0.20601 0.05740 0.36507
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the straight segments.
Fluctuations of type (i) are mostly a concern for large angle scatterings

since their numbers are small and their representation in a transport cal-
culation may be rather crude (or absent). The influence of this on muon
cooling type applications is an interesting and far-ranging question which is
not pursued here. In the present Note the treatment of this effect is essen-
tially the same for the fixed step or variable step algorithms: the number of
large angle scatterings in each step is chosen from a Poisson distribution.

Type (ii) fluctuations—the main subject of this Note—do not appear
to be a significant source of inaccuracy in muon cooling applications. If
certain precautions are taken, fixed step size calculations yield adequate
results, at least from the limited perspective of the few examples explored
here.. On the other hand using a variable step size in the manner outlined
above does not impose a large overhead in cpu time and has the advantage
of removing the choice of steplength or at least making it less critical. A
decided disadvantage is the more complicated code.

Future improvements of the present algorithm might include a better
halting criterion for successive halving of the initial step. The use of a
single tolerance threshold (in pathlength) may be questioned, especially if
it is reached after only a small number of iterations. For example, a slight
lowering of the tolerance may trigger a new round of iteration (halving of
steplength) so that convergence of any given parameter as a function of
tolerance may not be a smooth function of the specified tolerance. Perhaps
a streamlined version of the pathlength estimation algorithm presented here
may be a useful addition to the more comprehensive simulation codes.
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